If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-54x-63=0
a = 25; b = -54; c = -63;
Δ = b2-4ac
Δ = -542-4·25·(-63)
Δ = 9216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9216}=96$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-96}{2*25}=\frac{-42}{50} =-21/25 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+96}{2*25}=\frac{150}{50} =3 $
| x^2+13x-32/6=0 | | 25x^2-52x-61=0 | | 50=-16t^2+48t+18 | | 5x^2=6x-4 | | 32/3x+1=12/x+1 | | .5x+.25x+3=300 | | 32/12=3x+1 | | 3x+1=2.6667 | | 5500=x+(0.14*x) | | 3x+1=2.666667 | | 5500=x+(0.02*x)+(0.12*x) | | (n+2)*2=n+7 | | 3*(x+-4)=18 | | 5x^2-4x^2-12=0 | | 3n-6=(n-4)*5 | | 5500=x+(0.02x)+(0.12x) | | 30/45=6/a | | 3(n-4)=2n-6 | | 1/v+3v+v^2-5v=7v-56/v^2-5v | | n/12.168=-2 | | (4x-12)/3=4 | | x+(x+25/2)+(x+25/2)=43 | | (x+3)(x-3)=x+3 | | 2x+1x+1=3x+1 | | 3(4x−12) =4 | | (2x+1)(x+1)=45 | | 1/3+2x=1 | | 4x+3=4x+2.5 | | (x+2)^2=196 | | b/3+1=4/3 | | 2(4x+3)=8x+5 | | (x=2)^2=196 |